Abstract
Алгоритм PAM (Partitioning Around Medoids) представляет собой разделительный алгоритм кластеризации, в котором в качестве центров кластеров выбираются только кластеризуемые объекты (медоиды). Кластеризация на основе техники медоидов применяется в широком спектре приложений: сегментирование медицинских и спутниковых изображений, анализ ДНК-микрочипов и текстов и др. На сегодня имеются параллельные реализации PAM для систем GPU и FPGA, но отсутствуют таковые для многоядерных ускорителей архитектуры Intel Many Integrated Core (MIC). В настоящей статье предлагается новый параллельный алгоритм кластеризации PhiPAM для ускорителей Intel MIC. Вычисления распараллеливаются с помощью технологии OpenMP. Алгоритм предполагает использование специализированной компоновки данных в памяти и техники тайлинга, позволяющих эффективно векторизовать вычисления на системах Intel MIC. Эксперименты, проведенные на реальных наборах данных, показали хорошую масштабируемость алгоритма. The PAM (Partitioning Around Medoids) is a partitioning clustering algorithm where each cluster is represented by an object from the input dataset (called a medoid). The medoid-based clustering is used in a wide range of applications: the segmentation of medical and satellite images, the analysis of DNA microarrays and texts, etc. Currently, there are parallel implementations of PAM for GPU and FPGA systems, but not for Intel Many Integrated Core (MIC) accelerators. In this paper, we propose a novel parallel PhiPAM clustering algorithm for Intel MIC systems. Computations are parallelized by the OpenMP technology. The algorithm exploits a sophisticated memory data layout and loop tiling technique, which allows one to efficiently vectorize computations with Intel MIC. Experiments performed on real data sets show a good scalability of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.