Abstract

Even tiny lepton flavor violation (LFV) due to some New Physics is able to alter the conditions inside a collapsing supernova core and probably to facilitate the explosion. LFV emerges naturally in a See-Saw type II model of neutrino mass generation. Experimentally LFV is constrained by rare lepton decay searches. In particular, strong bounds are imposed on the mu->eee branching ratio and on the mu-e conversion probability in muonic gold. Currently the mu->e gamma decay is under investigation in the MEG experiment which aims at dramatic increase of sensitivity in the next three years. We search for a See-Saw type II LFV pattern which fits all the experimental constraints, provides Br(mu->e gamma) not less than Br(mu->eee) and ensures a rate of LFV processes in supernova high enough to modify the supernova physics. These requirements are sufficient to eliminate almost all freedom in the model. In particular, they lead to a prediction 0.5*10^(-12) < Br(mu->e gamma)< 6*10^(-12), which is testable by MEG in the nearest future. The considered scenario also constrains neutrino mass-mixing pattern and provides lower and upper bounds on tau-lepton LFV decays. We also briefly discuss a model with a single bilepton in which the mu->eee decay is absent at the tree level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.