Abstract
BackgroundThe issue of multidrug resistance (MDR) cancer is one of the major barriers to successful chemotherapy treatment. The ATP-binding cassette (ABC) efflux transporters play an important role in the chemotherapeutic failure. Several generations of ABC efflux transporter inhibitors have been developed, however, none of them could provide better clinical outcome due to systemic toxicities and significant drug-drug interactions. Therefore, the present study focused on identifying the effect of the natural carotenoid on ABC transporters and may provide a safer choice to defeat MDR cancer. PurposeThe aim of the present study was to evaluate the inhibitory potency of β-carotene on the ABC efflux transporters, as well as the reversal effect of β-carotene toward MDR cancers. The underlying molecular mechanisms and inhibitory kinetics of β-carotene on the major ABC efflux transporter, P-glycoprotein, were further investigated. MethodsThe human P-gp (ABCB1/Flp-InTM-293), MRP1 (ABCC1/Flp-InTM-293) and BCRP (ABCG2/Flp-InTM-293) stable expression cells were established by using the Flp-InTM system. The cytotoxicity of β-carotene was evaluated by MTT assay in the established cell lines, sensitive cancer cell lines (HeLaS3 and NCI-H460) and resistant cancer cell lines (KB-vin and NCI-H460/MX20). Surface protein detection assay and eFluxx-ID Green Dye assay were applied for confirmation of surface expression and function of the transporters. The transporter inhibition potency of β-carotene was evaluated by calcein-AM uptake assay and mitoxantrone accumulation assay. Further interaction kinetics between β-carotene and P-gp were analyzed by rhodamine123 and doxorubicin efflux assay. The influence of β-carotene on ATPase activity was evaluated by Pgp-GloTM Assay System. ResultsAmong the tested ABC efflux transporters, β-carotene significantly inhibited human P-gp efflux function without altering ABCB1 mRNA expression. Furthermore, β-carotene stimulated both P-gp basal ATPase activity and the verapamil-stimulated P-gp ATPase activity. In addition, β-carotene exerted partially inhibitory effect on BCRP efflux function. The combination of β-carotene and chemotherapeutic agents significantly potentiated their cytotoxicity in both cell stably expressed human P-gp (ABCB1/Flp-InTM-293) and MDR cancer cells (KB-vin and NCI-H460/MX20). ConclusionThe present study indicated that β-carotene may be considered as a chemo-sensitizer and regarded as an adjuvant therapy in MDR cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.