Abstract

Nerve growth factor (NGF), a member of the neurotrophin family, is an essential mediator of neuronal activity and synaptic plasticity of basal forebrain cholinergic neurons (BFCN). In processes of chronic degeneration of BFCN like in Alzheimer's disease (AD), characterized among others by amyloid containing plaques, NGF has been shown to improve cognitive decline and rescue BFCN but also to reduce survival of hippocampal neurons via p75 neurotrophin receptor (p75). Little is known about the mechanisms of NGF regulation in glial cells under pathological conditions in AD. This study investigates the influence of amyloid administration on the NGF protein secretion in rat primary hippocampal astrocytes. Astrocytes were stimulated with “aged” β/A4-Amyloid (1-40), and NGF was measured in different fractions, such as supernatant, vesicles, and cytosol fraction. Treatment with amyloid at a final concentration of 10μM for 72h led to increased NGF protein levels up to 30-fold increase compared to unstimulated controls. This observation may be an endogenous neuroprotective mechanism possibly contributing to a delay of amyloid-dependent loss of cholinergic neurons or contribute to accelerated neuronal death by activation of p75 within Alzheimer pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.