Abstract

The effect of argon and oxygen ion implantation both in separate and joint was carried out. Physical and chemical structure of the surface and corrosion-electrochemical behavior of 14Cr17Ni2 chromium-nickel steel was studied. Methods of potentiometry, atomic force microscopy, X-ray photoelectron spectroscopy, and microhardness measurement were used. It was found that the initial chromium-nickel steel exhibits high corrosion resistance in the medium of a borate buffer solution with the addition of a local corrosion initiator — potassium sulfate. However, steel was found to be susceptible to local (pitting) corrosion in this environment. It is shown that the implantation of argon and oxygen ions changes the nature of the corrosion-electrochemical behavior of chromium-nickel steel. Treatment with Ar+ ions enriched the sample surface with Cr atoms and reduces the overall corrosion losses of steel, but is characterized by the maximum value of local corrosion. Treatment with O+ ions provide optimal results in terms of reducing local and general corrosion. It was found that in this case, the sample surface is intensively oxidized to a depth of more than 20 nm, resulting in the formation of mixed oxides that are resistant to corrosion. There is a process similar to electropolishing of the sample surface due to partial dissolution of steel. Defects in the structure of the sample surface, on which pitting corrosion began, are “healed”. Joint treatment with Ar+ ions and O+ ions does not give noticeable advantages compared to separate implantation with these ions. Corrosion losses for samples treated only with O+ ions and Ar+ ions together with O+ ions did not exceed those for the original sample, although there are practically no passivation regions on the potentiodynamic curves. Microhardness of the samples after ion implantation coincides with the microhardness of the original sample. Result of ion implantation is no significant for change in the structural and phase structure of the surface layers of chromium-nickel steel. Ion implantation will not negatively affect the physical and mechanical properties of studied steel. The research shows that it is advisable to choose the type of implantable ions and the optimal process parameters depending on the steel grade and its application. For these purposes, the research methodology proposed in this article will be useful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.