Abstract

We consider a surface as a variety of centered planes in a multidi­mensional projective space. A fiber bundle of the linear coframes appears over this manifold. It is important to emphasize the fiber bundle is not the principal bundle. We called it a glued bundle of the linear coframes. A connection is set by the Laptev — Lumiste method in the fiber bundle. The ifferential equations of the connection object components have been found. This leads to a space of the glued linear connection. The expres­sions for a curvature object of the given connection are found in the pa­per. The theorem is proved that the curvature object is a tensor. A condi­tion is found under which the space of the glued linear connection turns into the space of Cartan projective connection. The study uses the Cartan — Laptev method, which is based on cal­culating external differential forms. Moreover, all considerations in the article have a local manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.