Abstract

천이류와 같은 급변류에 의한 하상변동을 예측하기 위한 이차정확도의 유한체적법 모형을 제시하였다. 부정류 조건하에서의 유사이송과 하상변동문제에 적용하기 위하여 유사이송모형을 천수방정식과 연계하였다. 지배방정식은 MUSCL 기반의 유한체적법을 이용하였고, 계산요소간 흐름률은 HLLC approximate Riemann solver를 이용하여 계산하였다. 일차원과 이차원 수로에서의 댐붕괴파에 의한 하상변동문제와 월류로 인한 하류부 댐사면의 침식문제에 적용한 결과, 적정한 매개변수를 이용하는 경우에 전반적으로 정확한 수치모의 결과를 얻을 수 있었다. 또한 전반적인 계산결과는 수치적으로 안정적이고 물리적으로 타당한 결과를 나타내었고, 이로부터 제시된 수치모의 기법이 상류와 사류조건하에서의 하상변동 문제에 적용이 가능할 것으로 판단된다. A stable second-order finite volume method was proposed to predict sediment transport under rapidly varied flow conditions such as transcritical flow. For the use under unsteady flow conditions, a sediment transport model was coupled with shallow water equations. HLLC approximate Riemann solver based on a monotone upstream-centered schemes for conservation laws (MUSCL) reconstruction was used for the computation of the flux terms. From the comparisons of dam break flow experiments on erodible beds in one- and two-dimensional channels, good agreements were obtained when proper parameters were provided. Lastly, dam surface erosion problem by overtopped water was simulated. Overall, the numerical solutions showed reasonable results, which demonstrated that the proposed numerical scheme could provide stable and physical results in the cases of subcritical and supercritical flow conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.