Abstract

The article analytically defines the model of parametric space of indicators for assessing the availability of infocommunication process in a wireless centralized network cluster. The researched process is described as a Markov queuing system, the controlled parameter of which is the total amount of occupied system resources for all active sessions of info-communication interaction. The defined space of qualitative stochastic characteristics included: the average amount of occupied system resources and the average number of active sessions of infocommunication interaction in the information environment of the base station; the probability of losing the incoming request due to insufficient free system resources or lack of free communication channels on the base station side. Also, the functional dependences of the values of the listed qualitative characteristics on the type and parameters of the volume distribution function of the released system resources of the base station are analytically determined. As additional controlled parameters in the created model such characteristics as the level of loading of the front-end interface of the base station and the desired amount of system resources specified in the input request are taken into account. From the results of empirical research of the created mathematical apparatus it was found that with increasing load on the front-end interface of the studied system, the values of all characteristic parameters of the metric of qualitative indicators increase. Note that the simultaneous increase in the values of the average volume of occupied system resources and the average number of active sessions of infocommunication interaction occurs almost linearly, in contrast to the behavior of the value of the probability of loss of incoming request, which increases exponentially. The obvious reason for the increase in the probability of losing an incoming request is the increase in the variance of the value of such a characteristic parameter as the desired amount of system resources in incoming requests. It was also found that the geometric distribution-based scheme for managing the allocation of system resources shows a tendency to satisfy incoming requests with less value of the desired amount of system resources and is generally focused on supporting already active sessions of infocommunication interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.