Abstract

본 연구에서는 하수슬러지를 이용하여 높은 에너지 밀도와 균일한 품질의 고형연료 생산을 위해 반탄화 기술을 적용하여 반탄화 생성물의 특성과 에너지원으로서의 가치를 확인하였다. 운전인자로 반응온 도(<TEX>$150-230^{\circ}C$</TEX>)와 반응시간(10-60분)을 달리한 결과, 반응온도가 높고, 반응시간이 길어질수록 반탄화 생성물의 수분함량은 감소하고, 발열량은 증가하였다. 또한 반응온도 조건의 상승과 함께 탄소의 함량 이 초기 시료(하수슬러지 탈수케이크) 대비 최대 60%까지 증가하였고, 산소와 수소의 함량은 감소하는 경향을 나타내었다. 특히 반응온도 <TEX>$210^{\circ}C$</TEX> 이상에서는 반응시간에 관계없이 평균 발열량 약 4,818 kcal/kg를 나타내었으며, 연료비, 석탄밴드 분석 결과 H/C와 O/C의 원자수비가 낮아져 반탄화를 통해 저등급 석탄에 가까운 연료등급으로 개선되었음을 확인 할 수 있었다. In this work, torrefaction of the sewage sludge was investigated the characteristics of torrefied products and the value of as energy resource to improve energy density and to maintain consistent quality of SRF. Torrefaction was performed two important torrefaction operational parameter, temperature(<TEX>$150-230^{\circ}C$</TEX>) and reaction time(10-60min). As raising the torrefaction temperature at long reaction times, the moisture content of torrefied products was decreased, while the heating value was increased. Moreover, increasing of the torrefaction temperature led to a increase of the content of the carbon up to 60% compare to the initial the sample, and a decrease of the content hydrogen and oxygen. Especially, Average heating value was 4,818 kcal/kg regardless of the reaction time when torrefaction was performed over <TEX>$210^{\circ}C$</TEX>. In addition, the fuel ration and coal band were improved after torrefaction because the O/C and the H/C ratio were decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.