Abstract
Scattering theory covers a large spectrum of scientific and technological applications such as non destructive control, radars, sonar, geophysical exploration, remote sensing, medical imaging, under-water acoustics, seismology, biological pattern recognition and special techniques in medical diagnostics. In most of the above cases the assumption that the material is isotropic is inadequate. Therefore, in order to conform to reality, we have to accept that the space is anisotropic, i.e. its properties depend on the direction. Although the anisotropic property was already known, since Green’s era, only a few publications have appeared, due to the mathematical complexity related with the anisotropic property. It was during the last years that more references considered the anisotropic scattering, while most of them regarded only anisotropic scatterers. The thesis examines the problem of scalar field anisotropic scattering for the general case, where not only the scatterer but also the propagation space are anisotropic and they do not have the same characteristics. It comes out that the characteristics of an anisotropic medium are being fully carried by a modified gradient operator which appears in any case of anisotropy and allows the calculation of the fundamental solution for the modified Helmholtz’ equation. Once the fundamental solution is known, the basic problem of anisotropic scattering is postulated as well as the transmission and the boundary conditions. Incident fields’ forms and characteristics are being presented and the energy functional for this scattering problem is being produced. The integral representations for the scattered, total and internal field are also developed, while at the same time arises the modified radiation condition. Asymptotic analysis produces the anisotropic scattering amplitude and afterwards follows the definition of the energy functionals that correspond to our case. The reciprocity theorems, the general scattering, as well as the optical theorem for anisotropic medium are also proved. As an example, the theory developed in this thesis is applied to the low frequency problem for an anisotropic scatterrer. Finally, the results are verified by reducing the whole problem of anisotropic scattering to its equivalent of isotropic space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.