Abstract
In this study, experimental and numerical studies for the synthesis of carbon nanotube(CNT) in methane counterflow diffusion flame have been performed. Methane mixed with acetylene() was used as a fuel gas and ferrocene was used as a catalyst for synthesis of CNT. The major parameters was mixing rate and mixing rates were 2 %, 6 %, and 10 %. Characteristics of CNT formation on grid were analyzed from SEM images. the chemical reaction mechanism adopted is GRI-MECH 3.0. Numerical results showed that flame temperature and CO mole fraction were increased with increasing acetylene mixing rate. Experimental results showed that the CNT synthesis in 2% acetylene mixture flame better than that of 6% and 10% acetylene mixture flames. It can be considered that 6% and 10% acetylene mixture flames generated the excessive carbon source and then it interrupted the supplement of the carbon source into ferrocene catalyst. It can be found that the supply of appropriate quantity of carbon source can make effect to synthesis of high purity of CNT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society of Marine Environment and safety
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.