Abstract

이 논문에서는 원격탐사 자료의 분류를 목적으로 서로 다른 훈련 집단들과 분류자들로부터 생성된 분류 결과들을 결합하는 분류 틀을 제안하였다. 제안 분류 틀의 핵심 부분은 서로 다른 훈련 집단과 분류자들을 이용함으로써 분류 결과 사이의 다양성을 증가시켜서 결과적으로 분류 정확도를 향상시키는데 있다. 제안 분류 틀에서는 우선 서로 다른 샘플링 밀도를 가지는 서로 다른 훈련 집단들을 생성한 후에, 이들을 서로 다른 구분 능력을 나타내는 분류자들의 입력 훈련 자료로 사용한다. 그리고 초기 분류 결과들에 다수결 규칙을 적용하여 최종 분류 결과를 얻게 된다. 다중 시기 ENVISAT ASAR 자료를 이용한 토지 피복 분류사례 연구를 통해 제안 방법론의 적용 가능성을 검토하였다. 사례 연구에서 3개의 훈련 집단과 최대우도 분류자, 다층 퍼셉트론 분류자, support vector machine 등과 같은 3개의 분류자를 이용한 9개의 분류 결과를 결합하였다. 사례 연구 결과, 제안 분류 틀 안에서 토지 피복 구분에 관한 상호 보완적인 정보의 이용이 가능해져서 가장 높은 분류 정확도를 나타내었다. 서로 다른 결합들을 비교하였을 때, 다양성이 크지 않은 분류 결과들을 결합한 경우에는 분류 정확도의 향상이 나타나지 않았다. 따라서 다중 분류 시스템의 설계시 분류자들의 다양성을 확보하는 것이 중요함을 확인할 수 있었다. In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.