Abstract

The open method of solid minerals winning occupies a significant place in the total opening of the mining complex deposits of the Republic of Kazakhstan. In the energy band, a prominent role belongs to the Ekibastuz coal basin, where a number of large coal strip mine operates. The level of subsurface, equal parts of spoil bank of the external and internal stripping after a while lead to complex problems of ensuring the stability and safety of mining operations. The location of large external rock dumps on the bead surface has a negative effect on the stability of the latter. The purpose of the work was to establish the degree of the external rock dump influence located on the bead surface on the stability of adjacent rock mass of the coalmine depending on the distance of the dump to the upper edge of the side. There was numerical simulation of stress-strain state of adjacent rock mass under action of distributed load from rock dump carried out. It has been shown that studies of any point stability of the array from this type of load should be carried out on the basis of elasticity and the use of the finite element method theory implemented in packages of programs oriented specifically to scientific and engineering applications. There are the methodology and results of numerical modeling of quantitative assessments of various sections stability of the side loaded with an external rock dump with a height of 160m presented on the example of «Ekibastuz» coal mine. Based on a certain theory of rock strength and the criteria for their discontinuity, limit estimates of the critical distance of the external rock dump from the upper edge of the side were obtained, at which the latter may lose stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.