Abstract

The study is aimed at developing a nondestructive testing method for electronic equipment and its components. This method allows one to identify critical design defects of printed circuit boards (PCB) and to predict their service life taking into account the nature of probable operating loads. The study uses an acoustic emission method to identify and localize critical design defects of printed circuit boards. Geometric dimensions of detected critical defects can be determined by X-ray tomography. Based on the results of the study, a method combining acoustic emission and X-ray tomography has been developed for nondestructive testing of printed circuit boards. The stress-strain state of solder joints containing detected defects is analyzed. Durability is predicted using the damage function of the material, experimental fatigue curve with allowance for rheological properties of materials, the temperature effects, and complex stress-strain state. The results of using the developed method for estimating the degree of damage of the electronic board have been verified based on the experimental results of studies carried out in accordance with IPC-9701. The prediction error does not exceed 5%. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.