Abstract

Modern operating conditions of large industrial enterprises require the provision of high reliability of power supply to consumers while reducing the cost of the electricity consumed. These requirements are ensured by the widespread introduction of own sources of electrical energy. These include combined heat and power plants, gas turbines, gas pistons and steam and gas power plants. At the same time, there is a significant complication of the industrial network configuration and possible emergency modes. One of the emergency modes in such networks is the loss of excitation of the synchronous generator. The admissibility of such a regime is specified by regulatory documents. In this situation, the generator goes into asynchronous mode and consumes reactive power from the network. The purpose of this work is to identify the admissibility of the synchronous generator operation for a certain time in the asynchronous mode as a result of the loss of excitation. An algorithm has been developed to calculate the transient electromechanical process of a synchronous generator taking into account the loss of machine excitation. Investigations have been carried out for various operating modes of an industrial power plant taking into account the initial generator load using the KATRAN software. The calculation results allow determining the generator load by active power at which the synchronous generator can operate in the asynchronous mode without excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.