Abstract
The paper is on the problem of classification an asteroid as potentially hazardous (PHA), namely the estimation of the MOID parameter. Minimum Orbital Intersection Distance describes the minimal distance between two confocal heliocentric orbits. Analytical, numerical and hybrid methods used for the MOID estimation are reviewed. A brief description of the K. V. Kholshevnikov and G. F. Gronchi analytical methods, which are considered to be classical, is given. The task of calculating the MOID parameter for a large number of asteroids (more than 10,000) with a maximum calculating speed and the ability to parallelize the process is set. A numerical method based on geometrical considerations concerning the location of the bodies on their orbits is proposed. Let us consider two bodies A and E. Since only the minimum distance between two orbits is required, the information on the actual position of the bodies on their orbits is insignificant. The idea is to calculate one full revolution of the body A. For each position of body A the corresponding position of the body E is calculated under the following assumption. Consider a plane P , comprising the body A and the Sun. Therefore, plane P is perpendicular to the orbital plane of the body E. Of the two points at which the plane P intersects the orbit of the body E, E is considered to be at the point that is the nearest the body A. Thus, the position of the body E will depend on the position of the body A. As a result, from the geometric assumptions on the triangle formed by the Sun and two bodies, the distance between A and E is calculated. When one complete revolution of the body A with a certain step is calculated, we receive a set of the distances between two orbits, from which we can identify the areas of the local minima of the discrete representation of the distance function (the distance between the orbits of A and E). Then, the procedure of tuning is carried out to verify and precise the values of local minima of discrete representation of the distance function. As a result, the smallest value of the local minima is considered to be the estimation of the Minimum Orbital Intersection Distance (MOID) takes. Pros of the suggested method are as follows: high speed and adjustable calculation accuracy, the suitability to the use of parallel computing. Comparative tests of the described method were carried out. The results received are consistent with the classical G. F. Gronchi method.
Highlights
The paper is on the problem of classification an asteroid as potentially hazardous (PHA), namely the estimation of the Minimum Orbit Intersection Distances (MOIDs) parameter
Analytical, numerical and hybrid methods used for the MOID estimation are reviewed
Of the two points at which the plane P intersects the orbit of the body E, E is considered to be at the point that is the nearest the body A
Summary
Рассматривается один из аспектов задачи отнесения астероида к классу потенциально опасных для Земли астероидов, а именно, проблема оценки параметра MOID (Minimum Orbital Intersection Distance), характеризующего минимальное расстояние между двумя конфокальными гелиоцентрическими орбитами небесных тел. В силу того, что расчеты необходимо проводить для значительного числа астероидов, время расчетов становится важным критерием при выборе метода оценки MOID. Метод относится к группе численно-аналитических методов и предназначен для использования в случаях, когда требуется провести расчет параметра MOID для значительного числа астероидов, затратив при этом минимум времени. Оценка параметра MOID на основе данных наблюдений астероидов проводится для первичного отбора потенциально опасных астероидов и выделения астероидов, чьи орбиты расположены близко к орбите Земли. Что метод, описанный в данной работе, предназначен для оценки минимального расстояния между орбитами, т.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.