Abstract

Introduction. The formation of the surface of a part when processing it on a metal-cutting machine is based on properly selected cutting modes. Complex methods of ensuring the specified quality of the part surface also take into account the tool geometry, its condition, and include corrections for tool deviation from the trajectory set by the CNC system under the influence of kinematic disturbances and spindle wavering. Subject. The paper analyzes the relationship between cutting modes and dynamic characteristics of the turning process, and its mapping into surface roughness. The aim of the work is to evaluate the influence of technological cutting modes taking into account the vibration activity of the tool on the roughness of the machined surface by means of simulation modeling. Method and methodology. Mathematical simulation of the dynamics of the cutting process is given, on the basis of which a digital simulation model is built. A methodology of using the simulation model for determining optimal cutting modes and predicting surface roughness taking into account tool vibrations is proposed. By means of experiments and analysis of the frequency characteristics of tool vibrations, the created model is validated, parameters of the cutting forces model subsystem and dynamic tool subsystem are specified, and geometrical topologies of the part surface are constructed. The calculated cutting forces are compared with experimental forces, and similar patterns and levels of characteristics are observed. An assessment of the optimality of the selected cutting modes is proposed based on the analysis of the tool vibration spectrum relative to the workpiece and the results of the numerical model simulation. Results and Discussion. A comparison of the results of digital modeling of the geometrical surface of the workpiece and the real surface obtained during the field experiment is given. It is shown that the roughness of the real surface obtained by machining with constant cutting modes varies relative to the surface roughness of the simulation model within the limits of not more than 0.066 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.