Abstract

The notion of quasiary relation which can be considered generalization of the notion of traditional n-ary relation is proposed. A number of algebras of quasiary relations is built and investigated. Alongside with conventional operations of union, intersection, and complement, special nominative operations of renomi-nation and quantification are defined for quasiary relations. The isomorphism between the algebra of quasiary relations and the first-order algebra of total single-valued quasiary predicates is proved. Al-gebras of bi-quasiary relations defined over sets of pairs of quasiary relations are built. The isomorphism between algebras of bi-quasiary relations and alge-bras of quasiary predicates is proved. The following subclasses of algebras of bi-quasiary relations are specified: alge-bras of partial single-valued (functional), total, total many-valued bi-quasiary relations. For all defined subclasses their counterparts of the classes of algebras of quasiary predicates are described. Also subalgebras of the algebra of bi-quasiary relations induced by upward closedness and downward closedness are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.