Abstract
Securing the radiological safety is a prerequisite for the safe management of the naturally occurring radioactive materials (NORM) which cannot be reused. This becomes a crucial focus of our R&D efforts upon the implementation of the Act on Protective Action Guidelines against Radiation in the Natural Environment. To secure the safety, the establishment of technical bases and procedures for securing radiological safety related to the disposal of NORM is required. Thus, it is necessary to analyze the characteristics, to collect the data, to have the radiological safety assessment methodologies and tools, to investigate disposal methods and facilities, and to study the effects of the input data on the safety for the NORM wastes. Here, we assess the environmental impact of the NORM waste disposal with respect to the major domestic and foreign NORM characteristics. The data associated with major industries are collected/analyzed and the status of disposal facilities and methodologies relevant to the NORM wastes is investigated. We also suggest the conceptual design concept of a landfill disposal facility and the management plan with respect to the major NORM wastes characteristics. The radionuclide pathways are identified for the atmospheric transport and leachate release and the environmental impact assessment methodology for the NORM waste disposal is established using a relevant code. The assessment and analysis on the exposure doses and excessive cancer risks for the NORM waste disposal are performed using the characteristics of the representative domestic NORM wastes including flying ash, phosphor gypsum, and redmud. The results show that the exposure dose and the excessive cancer risks are very low to consider any radiation effects. This study will contribute to development in the areas of the regulatory technology for securing radiological safety relevant to NORM waste disposal and to the implementation technology for the Act.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Nuclear Fuel Cycle and Waste Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.