Abstract

This study develops a damage model for characterizing the ductile crack growth on the bases of observation of micro-void nucleation for recent structural steels.The resistance to ductile crack initiation is controlled by a local strain at the tip of a notch or a fatigue pre-crack of a specimen. On the other hand, ductile crack extension is controlled by a stress triaxiality dependent critical strain for ductile failure obtained by tension tests of circumferentially notched round-bar specimens. In steels used, the main process for ductile failure is nucleation of micro-voids, whose size is in the order of 1 μm, that are generated at the final stage of ductile failure. According to these observations, a damage model is proposed for simulating the ductile crack extension.This model enables the prediction of the crack growth resistance in terms of CTOD for fatigue pre-cracked specimens with two different crack depth ratios a0/W, where a0 is the initial crack length and W is the specimen width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.