Abstract

We performed a simulation for artifacts on liver dynamic MR imaging with the contrast agent gadolinium-ethoxybenzyl (Gd-EOB)-DTPA. The signal enhancement of the image by the contrast agent in the arterial dominant phase was assumed, and the time-enhancement curve was numerically generated. The data in k-space was obtained by the Fourier transform of a liver image. By assuming the scan timing and duration in the time-enhancement curve, the data set of each phase-encoding step in k-space was increased in proportion to the corresponding intensity in the time-enhancement curve. We obtained the simulated image by the Fourier transform of the k-space data, and investigated artifacts in the image. Assuming the use of the centric k-space filling scheme, blurring in the image is found when the scan timing is delayed. When the scan is started in an early timing, we observe the effect of edge enhancement in the image. These artifacts of blurring and edge enhancement are decreased by shortening the scan duration. Assuming the use of the sequential k-space filling scheme, those artifacts are not prominent. The use of the sequential scheme would be effective for the purpose of avoiding the artifacts. It is known that the contrast enhancement would not be sufficient without optimal scan timing; in addition, artifacts should be noted. For basic study of the contrast enhancement and artifacts, our simulation technique based on the time-enhancement curve would be useful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.