Abstract
The DRAM module is an important part of servers, workstations and personal computer. Its malfunction causes a lot of damage on customer system. Therefore, customers demand the highest quality products. The company applies DRAM module Outgoing Quality Assurance Inspection(OQA) to secures the highest quality. It is the key process to decides shipment of products through sample inspection method with customer oriented tests. High fraction of defectives entering to OQA causes inevitable high quality cost. This article proposes the application of ensemble learning to classify the lot status to minimize the ratio of wrong decision in OQA, observing a potential in reducing the wrong decision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.