Abstract
This study is a search for more energy-efficient turning enabled by optimal utilization of the machining facility’s power grid. To that end, the authors have (i) modeled the machining facility on the principles of object-oriented design; (ii) tested the model for adequacy in real-world applications; (iii) devised an approach to implementing specific processes and related design solutions for more energy-efficient machining. Cluster analysis shows that a typical turning line used in small-batch manufacturing may contain up to 20 machines with the following power distribution: 7 0.75-kW machines, 4 1.5-kW machines, 3 2.2-kW machines, 1 3-kW machine, 1 4-kW machine, 1 5.5-kW machine, 1 7.5-kW machine, and 2 11-kW machines. This configuration enables the most power-efficient turning process. The batch for turning should be distributed by the maximum power factor using the object model for the application as well as the author-developed NET-based software. In this approach, all the machines serve as cluster centers that the machined parts are grouped around to make the turning process more energy-efficient by reducing the in-grid electricity loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the South Ural State University series "Power Engineering"
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.