Abstract

This review summarizes the main achievements of recent years in molecular organization research of yeast cell surface, i.e., the compartment that consists of the coordinately functioning plasma membrane, periplasmic space, and cell wall. There are data on vesicular transport to the external environment through the cell wall and the formation of channels in the wall, which indicate the possibility of dynamic rearrangements of the molecular structure of the yeast cell wall. There is an idea about the mosaic arrangement of the compartments of the plasma membrane. The hypothesis has been suggested on the heterogeneity of the molecular structure of the cell wall, which is usually considered as uniform except for the budding zones. The groups of proteins that form the molecular assembly of the yeast cell surface have been described. Special attention has been paid for proteins with amyloid properties, including Bgl2p glucanosyltransglycosylase, which is important for virulence in pathogenic yeast, and Gas1p, the first of the studied proteins of the cell surface, which is involved in the regulation of ribosomal DNA transcriptional silencing. The data on the structure of receptors localized on the cell surface and the "moonlight" proteins, involved in the cell stress response of yeasts, have been given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.