Abstract
The paper lists the classic and modern views on the microalgae's culture growth, which constitute a new paradigm of modeling photobiosynthesis. Microalgae are considered as lower obligate photoautotrophs capable of oxygenic photosynthesis, characterized by the separation of photochemical and enzymatic processes. A model scheme of the light and dark reactions conjugation in microalgae is proposed. The process of biosynthesis of cell biochemical structures from minerals is carried out due to the energy of high-potential forms of high-energy compounds (NADP·H, ATP). It is shown that the microalgae's growth can be considered as a set of energyexchange reactions. The concept of the absence of limiting microalgae's growth by environmental factors is proposed. The rate of biomass synthesis is determined by the reduced flow density of the energy or plastic substrate to the key enzyme. Also, for convenience in practical terms, productivity can be expressed through the biochemical measured ratio of structural and reserve forms of biomass. In any case, the dependence of the rate of biomass synthesis on the value of the reduced flux density is described by linear splines, which allows you to clearly set the switching point of the limiting factor and obtain simple mathematical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Issues of modern algology (Вопросы современной альгологии)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.