Abstract

The article considers the homogeneous vortex motion of an inhomogeneous fluid in a stationary ellipsoidal cavity arbitrarily oriented with respect to the direction of a uniform gravity field using the Lagrange variables. Uniform vortex motion of a fluid is a motion in which the rotor speed for all particles has the same value, and depends only on time. The article shows that the equations of homogeneous vortex motion of a heavy inhomogeneous fluid are possible in an ellipsoidal cavity with a linear density distribution and proposes a geometric interpretation of fluid motion. Using the Lagrange variables, the equations of motion of an inhomogeneous fluid are obtained, coinciding with the equations of a heavy rigid body motion around a fixed point, written in a fixed coordinate system arbitrarily located relative to the direction of a homogeneous gravity field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.