Abstract
This study helps develop a cool body armor that maintains a tight-fit configuration to the body surface and evaluates the performance of newly developed body armor in a wear test. Three types of body armor were used for evaluation. One was a tight fitting body armor that was constructed to improve the degree of fit and ease of movement for Korean soldier using 3D technology. Another was ventilating body armor with attached spacers on the shoulder to reduce the thermal stress on the soldier. The third was a prevailing body armor produced by a Korean body armor company. In order to evaluate the performance of the body armor, a human wear test, a thermal mannequin test, and computational fluid dynamics (CFD) were executed. Five subjects participated in the wear test. Subjective wear sensation, total amount of sweat and dynamic change of clothing microclimate were observed during and after exercise on a treadmill; subsequently, it was found that subjects rated tight fitting body armor and ventilating body armor lighter, drier, and easier to move than the conventional body armor (p<.05). Total amount of sweat was the least in the case of ventilating body armor. The thermal resistance and vapor resistance of the ventilating body armor were improved remarkably. In addition, the skin temperature of the ventilating body armor with spacers was lower than the tight fitting body armor by at least <TEX>$1^{\circ}C$</TEX> in the CFD result. It is noted that thermal-wet comfort of the 3D body armor with ventilating feature is superior to the conventional body armor, especially when the ventilating channel is not closed due to a backpack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society of Clothing and Textiles
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.