Abstract

Electric kickboards provide personal mobility with a simple structure and easy operation. With these advantages, the number of users is increasing annually. However, as the number of users of electric kickboards increases, related accidents are also increasing. To prevent accidents, this study proposes the topological optimization of an electric kickboard connecting part to improve structural strength during a front collision. The results confirmed that as the volume fraction increased, the structure connecting the board and the bottom of the handle support changed to a toroidal shape, thereby lowering the maximum stress and improving the uniformity of the stress distribution. In addition, the topological optimization was safer than the connecting parts of two typical electric kickboards sold in the Korean market. These findings can contribute to improving the safety and optimizing the design direction of electric kickboards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.