Abstract
This study proposes a fatigue reliability evaluation procedure for steel-composite high-speed railway bridge based on dynamic analysis and investigates the effectiveness of Tuned Mass Damper(TMD) in terms of the extension of fatigue life of the bridge. For the fatigue reliability evaluation, the limit state is determined using S-N curve and linear fatigue-damage accumulation. Dynamic analyses are peformed repeatedly to consider the uncertainties of train-velocity and damping ratio of the bridge. The distribution of random variables related to fatigue damage for the intended service life is then statistically estimated from analytical results. Finally, the fatigue reliability indices are obtained by means of the Advanced First-Order Second-Moment (AFOSM) method. Through numerical simulation of a steel-composite bridge of 40m span, the effectiveness of TMD on fatigue life of the bridge is examined and the results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Earthquake Engineering Society of Korea
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.