Abstract
본 논문에서는 지수생존 모형의 형태들로써 단순 지수모형, 변환 점 지수모형과 유한 혼합 지수모형 등 세 가지 모형을 소개한다. 이러한 모형들 중에서, 최적의 모형을 찾기 위하여 Gelfand와 Ghosh(1998)의 방법을 이용한 모형 선택 방법을 제안한다. 이때, 계산상의 어려움을 피하기 위하여 자료 확장 기법(Tanner와 Wong, 1987)과 깁스 샘플러(Gelfand와 Smith, 1990)를 사용하였다. 제안된 베이지안 방법을 설명하기 위하여 모의 실험 자료와Stangl의 항 우울제 자료에 적용한다. 모형 선택 방법은 사전 분포와 모형 선택 기준의 가중치에 민감하지 않다는 것을 제한된 우리의 실험으로 알 수 있었다. We introduce three types of exponential survival models, such as simple model, change-point model and finite mixture model in this paper. Among these models, in order to choose the best model, the model choice method is proposed using Gelfand and Ghosh(1998)'s idea. Then to avoid the computational difficulties, data augmentation method (Tanner and Wong, 1987) and Gibbs sampler (Gelfand and Smith, 1990) are employed. Our methodology is applied to both simulated data and Stangl (1991)'s On-impramint Hydrochloride data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.