Abstract
수동소나 시스템에서는 함정의 소음원에서 발생하는 방사 소음을 분석하여 표적을 탐지 및 식별한다. 소나의 탐지 범위 안에 다수의 소음원이 존재하면 신호를 분석할 때 각 소음원에서 나오는 성분들이 혼합되어 각각의 소음원을 규명하기가 어렵다. 이를 해결하기 위해 일반적으로는 배열 센서를 이용한 빔을 형성하여 소음원의 신호를 공간적으로 분리하는 기법이 사용되지만 환경에 따라 여전히 어려운 점이 있다. 본 연구에서는 수동소나 표적신호를 분리하기 위한 새로운 방법으로 주파수영역 독립성분분석(FDICA: Frequency Domain Independent Component Analysis)을 적용하고, 혼합된 표적신호를 분리하는 모의실험을 수행하여 그 타당성을 검증하였다. 표적신호 합성을 위한 특징 정보로는 기계류 토널 성분 및 프로펠러 성분을 사용하였고, 분리 전 후의 결과를 LOFAR(Low Frequency Analysis and Recording), DEMON(Detection Envelope Modulation On Noise) 분석을 통해 비교하였다. Passive sonar systems detect and classify the target by analyzing the radiated noises from vessels. If multiple noise sources exist within the sonar detection range, it gets difficult to classify each noise source because mixture of noise sources are observed. To overcome this problem, a beamforming technique is used to separate noise sources spatially though it has various limitations. In this paper, we propose a new method that uses a FDICA (Frequency Domain Independent Component Analysis) to separate noise sources from the mixture. For experiments, each noise source signal was synthesized by considering the features such as machinery tonal components and propeller tonal components. And the results of before and after separation were compared by using LOFAR (Low Frequency Analysis and Recording), DEMON (Detection Envelope Modulation On Noise) analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.