Abstract

When structural design of a tall building is conducted, reduction of wind-induced lateral displacement is one of the most important problem. For this purpose, additional dampers and vibration control devices are generally considered. In this process, control performance of additional devices are usually investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a tall building with additional smart damping device has been investigated. To this end, a 60-story diagrid building structure is used as an example structure and artificial wind loads are used for evaluation of wind-induced responses. An MR damper is added to the conventional TMD to develop a smart TMD. Because dynamic responses and the amount of structural material and additional smart damping devices are required to be reduced, a multi-objective genetic algorithm is employed in this study. After numerical simulation, various optimal designs that can satisfy control performance requirement can be obtained by appropriately reducing the amount of structural material and additional smart damping device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.