Abstract

혈액 세포 영상에서 백혈구는 환자의 건강상태를 파악하는데 중요한 정보를 제공하며, 이를 통해 다양한 질병을 조기에 예측할 수 있다. 따라서 질병의 조기 예측을 위해 혈액세포에서 백혈구의 분리는 매우 중요한 단계이다. 본 논문에서는 중요도 맵과 단계적 영역 병합을 이용하여 혈액 세포 영상에서 백혈구를 자동으로 분할하는 기법을 제안한다. 백혈구 세포 영역은 염색물질에 의해 주변에 비해 두드러진 색상, 질감 정보를 가짐으로 이를 기반으로 중요도 맵(Saliency Map)을 만든다. 이를 통해 세포 영상에서 두드러진 영역을 찾아 sub-image를 분리하고, 각 sub-image에서 mean-shift 알고리즘을 적용하여 영역 클러스터링을 수행한다. Mean-shift 적용 후 얻은 클러스터들에 대해 단계적 영역 병합 알고리즘을 적용하고, 최종적으로 백혈구 핵으로 판단되는 단일 클러스터를 얻을 수 있다. 본 논문에서 제안한 방법은 혈액 세포 영상을 사용하여 테스트한 결과 71%의 핵 검출 정확도를 보였으며, 기존의 다른 알고리즘보다 뛰어난 성능을 나타내었다. Leukocyte in blood smear image provides significant information to doctors for diagnosis of patient health status. Therefore, it is necessary step to separate leukocyte from blood smear image among various blood cells for early disease prediction. In this paper, we present a saliency map and stepwise region merging based leukocyte segmentation method. Since leukocyte region has salient color and texture, we create a saliency map using these feature map. Saliency map is used for sub-image separation. Then, clustering is performed on each sub-image using mean-shift. After mean-shift is applied, stepwise region-merging is applied to particle clusters to obtain final leukocyte nucleus. The experimental results show that our system can indeed improve segmentation performance compared to previous researches with average accuracy rate of 71%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.