Abstract

This paper tried to find out NO generation and removal mechanisms in the space of the atmospheric pulsed barrier discharge using laser induced fluorescence method, which is a very effective approach to the measurement of spatio-temporal density of specific molecules. The propagation velocity of the primary streamer reaches about [m/s] and the secondary streamer is produced in the vicinity of positive electrode after the primary streamer finished. In this work, pulse Nd:Yag and Dye lasers are used for generating the specific wavelength of 226[nm], which is possible to excite NO molecules into (0,0) and fluorescence signals as the transition of (0,2) is measured. For the effective removal of NO molecules in the plasma discharge process, the lower oxygen contents are needed and the influence of secondary streamer for the reduction mechanism of NO molecules is important

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.