Abstract

A rapid, simple and sensitive LC/MS/MS method for the determination of lercanidipine in human serum was validated and applied to the pharmacokinetic study of lercanidipine. Lercanidipine and internal standard, amlodipine, were extracted from human serum by liquid-liquid extraction with hexan-isoamyl alcohol (100: 1, v/v) and analyzed on a MS column with the mobile phase of acetonitrile-0.2% aqueous formic acid (70: 30, v/v). Using MS/MS with multiple reaction monitoring (MRM) mode, lercanidipine and amlodipine were detected without severe interferences from human serum matrix. Lercanidipine produced a protonated precursor ion () at m/z 612.3 and a corresponding product ion at m/z 280.0. Internal standard produced a protonated precursor ion (]) at m/z 409.0 and a corresponding product ion at m/z 238.0. The ruggedness of this method was investigated using quality control (QC) samples. This method showed linear response over the concentration range of 0.05-20 ng/mL with correlation coefficient greater than 0.999. The lower limit of quantitation using 0.5 mL of serum was 0.05 ng/mL, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the developed method ranged from 85.51 to 112.2% for lercanidipine with overall precision (% C.V.) being 3.56-13.1%. This method showed good ruggedness (within 15% C.V.) and was successfully applied for the analysis of lercanidipine in human serum samples for the pharmacokinetic studies, demonstrating the suitability of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.