Abstract
심박 변이도 (HRV) 분석은 심근허혈 (MI)를 평가하기 위한 편리한 도구이다. HRV에 대한 분석법은 시간 영역과 주파수 영역 분석으로 나눠질 수 있다. 본 논문은 단기간의 HRV 분석에 있어서 웨이블릿 변환을 주파수 영역 분석과 시간 영역 분석 비교하기 위하여 사용하였다. ST-T와 정상 에피소드는 각각 European ST-T 데이터베이스와 MIT-BIH Normal Sinus Rhythm 데이터베이스에서 각각 수집되었다. 한 에피소드는 32개 연속하는 RR 간격으로 나눠질 수 있다. 18개 HRV 특징은 시간과 주파수 영역 분석을 통하여 추출된다. 가종 퍼지소속함수 신경망 (NEWFM)은 추출된 18개의 특징을 이용하여 심근허혈을 진단하였다. 결과는 보여주는 평균 정확도로부터 시간영역과 주파수영역의 특징은 각각 75.29%와 80.93%이다. Heart Rate Variability (HRV) analysis is a convenient tool to assess Myocardial Ischemia (MI). The analysis methods of HRV can be divided into time domain and frequency domain analysis. This paper uses wavelet transform as frequency domain analysis in contrast to time domain analysis in short term HRV analysis. ST-T and normal episodes are collected from the European ST-T database and the MIT-BIH Normal Sinus Rhythm database, respectively. An episode can be divided into several segments, each of which is formed by 32 successive RR intervals. Eighteen HRV features are extracted from each segment by the time and frequency domain analysis. To diagnose MI, the Neural Network with Weighted Fuzzy Membership functions (NEWFM) is used with the extracted 18 features. The results show that the average accuracy from time and frequency domain features is 75.29% and 80.93%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.