Abstract

It was already realized at a current technological level of home network systems that the systems recognizes a user's simple order and carry out the order in the ubiquitous computing environment. However home is not a simple environment consisting into a large number of family members, so various order and situation would be needed accordingly. From now on we need to reach the technological level to infer that how is the user's behavior patterns and what kinds of service is the fittest to user who belong to the ubiquitous computing environment by using the result of the context interpreter. In this regards, active inferred-model needs to be suggested upgrading user's command into one step more higher level than the simple one adapting diversified feature. This study would like to suggest this active model recognizing context, which is user's environmental information applying basic network and inferring Context-based Service that user wants through the recognized result This study proposes a new method that can infer the user's desire in ubiquitous computing environment. First of all, we define a context as user's information of ubiquitous computing environment situation that user belongs to and we classify the context into 4W1H(Where, Who, When, What) formats. We construct Bayesian network and put the factor of context use as Bayesian network nodes. As a result, we can infer the user's behavior pattern and most proper service for user in the intelligent space from the probabilistic result of Bayesian network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.