Abstract

Development of metamaterials has led to the search and choice of effective methods of radio-wave nondestructive testing of their electrophysical parameters. The existing approaches to testing based on extracted of effective electrophysical parameters of metamaterials from the coefficients of reflection and transmission of an electromagnetic wave have low reliability and don't provide their local control. We present the new radio-wave method of local control of complex dielectric permittivity and magnetic permeability, as well as the thickness of metamaterial plate on a metal substrate with surface microwaves. The method is based on the solution of inverse problem in the determination of effective electrophysical parameters of metamaterial from the frequency dependence of the attenuation coefficient of the field of a slow surface electromagnetic wave excited in a test sample. The electrophysical parameters of the metamaterial are represented as parametric frequency functions in accordance with the Drude-Lorentz models of dispersion, and the solution of the inverse problem is reduced to minimizing the objective function constructed based on the discrepancy between the experimental and design theoretical values of the attenuation coefficients of surface electromagnetic wave fields on a grid of discrete frequencies. The structure of a measuring complex that implements the proposed method of control is proposed. For the numerical and experimental verification of the method, a sample of a metamaterial plate based on SRR elements with a negative refraction region in the frequency band 10.06–10.64 GHz was investigated. Experimental investigations of the metamaterial demonstrated the theoretical capabilities gained with measurement of the local electrophysical parameters with relative error not greater 10 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.