Abstract

예조건화 오일러 방정식의 수렴 특성에 미치는 특성 조건수의 영향을 조사하였다. 그리고 Choi와 Merkle 예조건화를 적용한 경우와 온도 예조건화를 적용한 경우의 수렴 특성을 분석하였다. 공간차분을 위해 예조건화 Roe의 FDS 기법을 적용하였고, 시간적분을 위해 예조건화 LU-SGS 기법을 적용하였다. 지배방정식의 수렴 특성은 특성 조건수에 크게 영향을 받는 것으로 나타났으며, 최적의 특성 조건수가 존재하는 것으로 나타났다. 그리고 최적의 특성 조건수는 Choi 와 Merkle 예조건화를 적용한 경우와 온도 예조건화를 적용한 경우가 서로 다른 것으로 나타났다. The effects of characteristic condition number on the convergence of preconditioned Euler equations were investigated. The two-dimensional preconditioned Euler equations adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Euler equations are strongly affected by the characteristic condition number, and there is an optimal characteristic condition number for a problem. The optimal characteristic condition numbers for the Choi and Merkle's preconditioning and temperature preconditioning are different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.