Abstract

The article presents the results of analysis and theoretical research in the direction of improving equipment for internal threading of parts in a flexible automated production. Methods for assessing the flexibility and readjustability of equipment are considered, which can be used as the basis for the developed methodology for the synthesis of technological elements of modules in conditions of computer-aided design. It is proposed to consider the technological system of the flexible manufacturing module (FMM) of threading, as a system in which transitions from state to state occur under the action of the simplest flows with the parameters of the transition probabilities of a continuous Markov chain. The developed mathematical model, which describes the states of a FMM, taking into account the readjustment of its technological elements, makes it possible to reflect the influence on the operation of the module of the parameters of applications for the changeover of processing modes, a tool, a power threading head, basic elements of a machine tool, a device, a loading device. The structure of the model and the labeled graph of the states of the system can be improved as the number of parameters and characteristics is refined. The solution of the resulting system of equations of final probabilities using the normalization condition allows for given (or experimentally obtained) intensities of arrival and service of changeover requests for FMM of threading, to obtain the values of the probability of non-changeover operation, as well as the probabilities of finding the system in an inoperative state due to the corresponding changeovers. For complete information and an objective assessment of the preferred option for use in FMS conditions, it is also necessary to take into account the stochastic processes occurring in the system under real operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.