Abstract

The paper presents an approach to coupled modeling of hydrodynamic and thermal processes occurring in the oil reservoir during field development using thermal methods of enhanced oil recovery. To simulate the processes of non-isothermal multiphase flow, an approach based on implicit calculation of pressure using the finite element method and an explicit calculation of phase saturations is used. A computational scheme for calculating the temperature field is considered. This scheme makes it possible to take into account both heat transfer between phases and heat transfer of a fluid mixture and matrix-rock. In order to take into account the effect of thermal conductivity, a coefficient characterizing the rate of heat transfer between the fluid mixture and the rock is used. The proposed scheme also takes into account the effect of the temperature field on the phases flow in the field reservoir and provides for the possibility of heat sources and sinks occured due to chemical reactions or thermodynamic processes in gaseous phases. Numerical experiments were carried out on a model of a real oil field obtained as a result of history matching of well data. The model contains a large number of wells and is characterized by a high heterogeneity of the porous medium. The applicability of the considered computational scheme is demonstrated on the example of modeling hot water injection into wells crossing a formation with super-viscous oil. The efficiency of thermal methods for the development of super-viscous oil fields is shown. When hot water was injected into the reservoir, the increase in oil production was about 25 % due to a significant decrease in oil viscosity. The time spent for calculating the temperature field while simulating a multiphase flow did not exceed 6 % of the total computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.