Abstract
In this paper, a fire detection system based on quantitative risk estimation is presented. Multiple sensors are used to build a comprehensive indicator that represents the risk of fire quantitatively. The proposed fire risk estimation method consists of two stages which determines the occurrence of fire and estimates the toxicity of the surveillance area. In the first stage, fire is reliably detected under diverse fire scenarios. The risk of fire is estimated in the second stage. Applying Purser's Fractional Effective Dose (FED) model which quantitates harmfulness of toxic gases, the risk of the surveillance area and evacuation time are calculated. A fire experiment conducted using four different types of combustion materials for the verification of the system resulted in a maximum error rate of 12.5%. By using FED calculation and risk estimation methods, the proposed system can detect various signs of fire faster than conventional systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.