Abstract

The article is considered the calculation method of the damper properties protective radial shock absorber for container. It is necessary destroying damage minimization of goods in the process of emergency falling connected with transportation to the place of possible use. Our technique innovation consists in the account of plastic properties of a material defined by the diagramme of plastic current and real contacts between shock absorber components. This method allows defining stress-strain state and shock absorber breaking acceleration at impact of container about rigid support using ANSYS Workbench 16.1 . The offered technique is confirmed by the analytical decision of the differential equation of container with shock absorber in elastic area at impact. These two algorithms are illustrated on the actual radial shock absorber made from two rows of cylindrical tubes connected among themselves. These tubes are made from aluminium alloy AMg6. It is illustrated that two layers of tubes have various fastening to each other and rigidity of layers. Hence, compression and destruction will occur in two stages. At first, the external layer of pipes is deformed. After that, internal one is deformed. It is established that strain energy will exceed more than half of kinematic energy of shock-absorber before blow. The curve of shock-absorber braking acceleration is found depending on crumpled area size.

Highlights

  • Максимальные ускорения в месте крепления демпфера к контейнеру по результатам расчета составили 248 g при максимальном сжатии до полного разрушения демпфера, что не превышает максимально возможных перегрузок для конструкции контейнера и груза, размещаемого внутри

  • Our technique innovation consists in the account of plastic properties of a material defined by the diagramme of plastic current and real contacts between shock absorber components

  • Ser. Mechanical Engineering Industry, 2016, vol 16, no

Read more

Summary

Расчет и конструирование

В результате расчета данного демпфера предложенным методом установлено, что при его упруго-пластическом деформировании на максимально возможную величину сжатия демпфера 0,043 м поглотится до 44 % кинетической энергии движения контейнера, что является достаточной величиной для предотвращения повреждения груза. Максимальные ускорения в месте крепления демпфера к контейнеру по результатам расчета составили 248 g при максимальном сжатии до полного разрушения демпфера, что не превышает максимально возможных перегрузок для конструкции контейнера и груза, размещаемого внутри. Методика расчета ускорения торможения демпфера в ПК ANSYS Workbench 16.1 полностью подтверждается аналитическим решением дифференциального уравнения движения контейнера на упругой стадии деформирования. Our technique innovation consists in the account of plastic properties of a material defined by the diagramme of plastic current and real contacts between shock absorber components This method allows defining stress-strain state and shock absorber breaking acceleration at impact of container about rigid support using ANSYS Workbench 16.1.

ОБРАЗЕЦ ЦИТИРОВАНИЯ
FOR CITATION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.