Abstract

The article analyzes the changes in requirements for oxide emissions resulted from fuel combustion in accordance with the International Convention for the Prevention of Pollution from Ships MARPOL 73/78. The problem of improving the energy efficiency of large-capacity gas tankers is studied by using different types of marine fuel. An energy audit was carried out on board a gas carrier with deadweight of 54,354 tons and propulsion system power of 12,400 kW. The energy audit relied on data of six voyages of a gas-carrier from July 14, 2016 to January 19, 2017. The Energy Efficiency Operational Index defined as carbon dioxide emissions per ton-mile of cargo movement, was used as a tool for assessing the energy efficiency of the ship. The research included the methods of comparative analysis of fuel change during the voyages. The comparative analysis was applied to calculate changes of consuming fuels with different lower caloric value. There have been given general characteristics of heavy fuel RMG 380 and diesel fuel DMA. Values of all parameters for analysis of operational coefficient of power efficiency were taken from the engineer’s log, cargo record book and oil record book, as well as from energy efficiency operation indicator reports of the company after each voyage. Based on the results of the assessment, the conclusions were drawn and perspectives were developed concerning the use of marine fuels and modification of the ship power plant. It has been inferred that using liquefied natural gas as main fuel increases power and economic efficiency of a ship and meets new requirements of MARPOL 73/78 to 2020 on sulfur content in fuel. The conducted research and preliminary calculations make it possible to predict an increase in the economic efficiency of a large-tonnage fleet while maintaining a high environmental friendliness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.