Abstract

센서 기술과 무선 통신 기술의 발달로 무선 센서 네트워크 환경에서 데이터 처리 중심의 미들웨어에 대한 연구가 크게 증가하고 있다. 무선 센서 네트워크에서 효율적인 데이터 처리와 신속한 전송을 위해 사용되는 미들웨어는 순간적인 데이터 밀집현상(burstness)으로 발생하는 중간 노드의 데이터 손실 문제를 해결하여야 하며, 이를 위해 폐기정책을 사용하거나 전송해야 할 데이터양을 최소화하는 압축 기법이 사용되고 있다. 그러나 폐기정책은 수집된 데이터의 정확성을 저하시키는 문제점이 있으며, 압축기법은 알고리즘 복잡도가 커서 추가적으로 프로세싱 오버헤드가 커지는 문제점을 지니고 있다. 본 논문에서는 계산 능력, 소비 전력 등 극히 한정된 자원만을 사용하여 데이터를 전달해야 하는 무선 센서 네트워크 환경에서 수집된 데이터의 효율성 및 정확성을 향상시킬 수 있는 Delta-Average 기법을 제시하였다. 제안된 기법을 통해 평균화 방식을 이용함으로써 순간적인 데이터 밀집현상으로부터 중복된 데이터에 대한 불필요한 전송을 방지하면서 정확성을 높이도록 하였다. 마지막으로 제안된 기법의 성능을 평가하기 위해 TinyDB에서 TOSSIM 시뮬레이션을 수행하였으며, 성능분석 결과를 통해 데이터 정확성이 향상되었음을 입증하였다. Recently, many of researchers have been studied in data processing oriented middleware for wireless sensor networks with the rapid advances on sensor and wireless communication technologies. In a wireless sensor network, a middleware should handle the data loss problem at an intermediate sensor node caused by instantaneous data burstness to support efficient processing and fast delivering of the sensing data. To handle this problem, a simple data discarding or data compressing policy for reducing the total amount of data to be transferred is typically used. But, data discarding policy decreases the correctness of a collected data, in other hand, data compressing policy requires additional processing overhead with the high complexity of the given algorithm. In this paper, it proposes a data-average method for enhancing the efficiency of data aggregation and correctness where the sensed data should be delivered only with the limited computing power and energy resource. With the proposed method, unnecessary data transfer of the overlapped data is eliminated and data correctness is enhanced by using the proposed averaging scheme when an instantaneous data burstness is occurred. Finally, with the TOSSTM simulation results on TinyBB, we show that the correctness of the transferred data is enhanced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.