Abstract

Paper presents various aspects of harmonic electromagnetic fields simulation on clusters. The major computational complexity comes from the solution of the systems of linear algebraic equations (SLAEs) arising from the approximations of corresponding electromagnetic boundary value problems by Nedelec elements of various orders. Effective and efficient approaches to the decomposition of the computational domain and the matrix of the system are considered. Distributed SLAEs are solved using iterative Krylov subspace methods preconditioned by additive Schwarz method. In order to increase the effectiveness of the algorithms iterations are performed in the trace space. Implementation of the solvers is based on MPI for data transfers. The solution of the systems in subdomains is performed by PARDISO direct solver from IntelR MKL library. Numerical experiments results on a series of model and real-life problems show the effectiveness of the presented algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.