Abstract

This paper presents a technology of making coupled simulations of weakly deformable bodies moving in elastoplastic environment and defining its mode of deformation. Calculation of penetration of a projectile is made by EGAK methods on a fixed calculating mesh implying that the projectile is rigid and its inner structure is unimportant. Fluid flow is calculated in a noninertial base that is connected with the stationary projectile (using BODY-3D method). Mode of deformation of the projectile is calculated on a Lagrangian mesh using software package LOGOS. Finite-element model of the projectile with the required degree of detail is used with real elastoplastic material properties of its structural parts. Loading of the projectile is implemented with an assignment of force boundary condition on its outer surface. Methods of coupling calculations and test results are provided. In this paper, it is shown that test results obtained by this developed technology are in a good agreement with direct modeling on a fixed calculating mesh. As an example of using this technology, calculation results of a penetrator-probe MoonLITE intruding into a soft soil barrier are presented. This penetrator is developed within the scope of MoonLITE mission of studying the Moon and can deepen into moon soil. Results of numerical simulations are in a good agreement with the experimental data, maximum difference for average slow-down rate of the penetrator is 10–15%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.