Abstract

Magnetic field generation in galaxies turns out to be a significant problem both for cosmic magnetohydrodynamics and mathematical physics. It is based on dynamo mechanism characterising the transition between the energy of medium turbulent motions and the magnetic field energy. The evolution of the field is described with the help of mean field dynamo equations. For galaxies the solutions are commonly found using so-called “no-z” approximation, while the half-thickness of the galactic disc is considered negligible. In nonlinear case mentioned equations admit contrast structure formation, predicted by the singular perturbation theory, describing equations with small parameter at the elder derivative. From astronomical point of view some authors tend to connect such solutions with the spiral structure of the galaxies and the formation of magnetic field reversals (when in different parts of galaxy there are regions with opposite directions of magnetic, divided by a thin transition layer). From numerical point of view finding the solution of two-dimensional system of equations requires large computational resources, for this reason using GPU and parallel calculations turns out to be reasonable. One of the implementation methods is calculating using OpenCL, which allows one to increase the process efficiency several times. OpenCL is a perspective crossplatform standard for development of applications, particularly involving GPU, the efficiency of which is rapidly increasing as the drivers evolve. The present work presents basic theoretical assessments of magnetic field behaviour, which are further confirmed and clarified during the computations. It is shown that the formation of the transition layers is described by fundamentally different mechanisms in radial and azimuthal directions. While radial reversals of the field turn out to be rather stable, all of the azimuthal structures are rapidly blurred due to the nature of the interstellar medium motions. That also indicates the practical impossibility of non-axisymmetric distributions of the field.

Highlights

  • Magnetic field generation in galaxies turns out to be a significant problem both for cosmic magnetohydrodynamics and mathematical physics. It is based on dynamo mechanism characterising the transition between the energy of medium turbulent motions and the magnetic field energy

  • The evolution of the field is described with the help of mean field dynamo equations

  • From numerical point of view finding the solution of twodimensional system of equations requires large computational resources, for this reason using GPU and parallel calculations turns out to be reasonable

Read more

Summary

Введение

Генерация магнитных полей галактик представляет собой одну из классических задач теории динамо [1]. Что большое количество задач, возникающих при обсуждении генерации космических магнитных полей представляют исключительную важность с точки зрения математической физики, являя собой важные примеры реализации тех или иных теоретических представлений [4, 5, 6, 7]. В случае исследования регулярных структур магнитных полей важно отметить, что уравнения галактического динамо являются результатом усреднения, которое ведется по областям, размеры которых превышают типичные масштабы турбулентности для Михайлов Е.А., Хасаева Т.Т., Тепляков И.О. Что угловая скорость уменьшается по мере удаления от оси вращения, и приводит как к повороту магнитного поля, так и к его усилению [2]. Исследован вопрос о том, насколько возможным может быть генерация полей той или иной симметрии, а также как они могут быть связаны с параметрами, характерными для конкретных галактических объектов. В работе даются оценки того, как полученные результаты могут быть ассоциированы с теми или иными астрономическими наблюдениями

Эволюция контрастных структур
Решение задачи на видеокарте
Выводы
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.