Abstract
This paper investigates the solvability of the optimal control problem for solutions of stochastic Sobolev type equations. It is shown that the optimal dynamic measurement problem can be considered as an optimal control problem. To do this, the mathematical model of dynamic measurements is reduced to a stochastic Sobolev type equation of the first order in the spaces of stochastic processes. The article presents theorems on the existence of a unique classical and strong solutions of the Sobolev type equation with initial condition of Showalter–Sidorov in the spaces of stochastic processes. The theorem of the unique solvability of the optimal control problem for such equation is proved. The abstract results obtained for Sobolev type equation are applied to the problem of restoring a dynamically distorted signal as an optimal dynamic measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics"
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.