Abstract

The work proposes an approach to the construction of an interval model for solving the problems of localization of the recurrent laryngeal nerve in the process of surgery on the neck organs of the human. The interval model reflects the distribution of the amplitude of the information signal - the reaction to stimulation of the tissues of the surgery area with an alternating current of limited amplitude. The technical and software means of detection and visualization of the recurrent laryngeal nerve were analyzed. A method of identifying the specified mathematical model is proposed, which is based on the procedures for solving a nonlinear optimization problem. The proposed method simplifies the procedure for identifying the parameters of the interval model, in particular, due to the analytical representation of the objective function of the optimization problem, in contrast to the known method, where this function is discrete. The model was verified on experimental data obtained during the thyroid surgery. The developed interval nonlinear model makes it possible to detect and visualize the placement of the laryngeal nerve in the area of surgical intervention during the operation and, accordingly, ensures a reduction in the risk damage of its.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.